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High Reynolds number flow past a flat ‘plate 
with strong blowing 

By J. B. KLEMPT AND A. ACRIVOS 
Department of Chemical Engineering, Stanford University 

(Received 25 May 1971) 

For the uniform flow past a semi-infinite flat plate subject to a blowing velocity 
profile equal to C( Uv/x),* the conventional boundary-layer approximations 
break down as C approaches 0.6192. Here, we consider the structure of the flow 
for large Reynolds numbers R when C exceeds this critical value. It is shown that, 
for C > 0.6192, a region containing injected fluid O(R-)) in thickness forms 
directly above the plate. To a first approximation the flow in this region is 
inviscid and the pressure a function of x only. This blowing region is separated 
from the free stream by a free shear boundary layer of thickness O ( R 4 ) .  Thus 
the flow domain consists of three distinct regions which interact to yield a 
similarity solution valid for large values of Rx. This solution is then extended to 
higher order by expanding the stream function in each region in powers of 
(Rx)-* and evaluating the first four terms in the resulting series using standard 
matching techniques. Finally, more general blowing profiles which also lead to 
boundary-layer ‘blow off’ are considered and an expression, valid far down- 
stream of boundary-layer detachment, is derived for the position of the streamline 
separating the injected fluid from that of the free stream. For the case of uniform 
blowing the blowing region takes on the shape of a wedge, indicating that no 
solution can exist for the corresponding external flow if the plate is truly semi- 
infinite. 

1. Introduction 
It has been known for quite a while, in fact since the early days of Prandtl, 

that suction or blowing can have a profound effect on the structure of the 
laminar boundary layer adjacent to a porous surface. For example, it  has been 
shown that a small amount of suction can retard or even prevent boundary-layer 
separation and that a small amount of blowing, as in transpiration cooling, can 
substantially decrease the rate of heat transfer from a hot external fluid to a 
cold surface. This subject has therefore been studied in some detail by a number 
of investigators. 

In  the case of blowing, with which we shall be concerned here, the nature of 
the flow strongly depends on whether vo, the blowing velocity relative to that 
of the free stream, is O(R-3) or O( I), R denoting the Reynolds number. Pretsch 
(1944) was one of the first to deal with a problem in the former category for 
favourable pressure gradients by considering the laminar boundary-layer flow 
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past a wedge with vo proportional to xi(1-m) so that a similarity transformation 
leading to the familiar Falkner-Skan equation could be applied. Pretsch, who 
later extended his analysis to  more general surfaces and blowing velocity profiles, 
found, for a favourable pressure gradient and in the limit of strong O(R-3) 
blowing, that the viscous term in the boundary-layer equations could be neg- 
lected in the region near the surface and the surface shear stress could be com- 
puted from the solution of the inviscid equations alone. The same problem was 
later studied by Acrivos (1962) using the method of inner and outer expansions. 
Acrivos showed, again in the limit of strong O(R-4) blowing, that the boundary 
layer can be divided into two overlapping regions: a relatively thick inner 
region containing most of the fluid emitted from the surface in which, as was 
done by Pretsch, viscosity can be neglected to a first approximation, and a thin 
viscous region of the normal boundary-layer scale where the fluid velocity is 
close to its value as given by potential flow theory. An interesting feature of 
this flow is that, for a constant property fluid, higher order approximations to 
the inner solution, and therefore to the surface shear stress, can be constructed 
using a regular perturbation expansion in terms of a suitably chosen blowing 
parameter without having to  take into account the existence of the viscous 
region. Another point worth noting is that this viscous layer, which plays an 
important role in determining the rate of mass transfer from an ablating surface 
to the external flow (Acrivos 1962), refers to the mixing zone between the injected 
fluid and that of the main stream, and therefore, to  the layer where the bulk of 
the vorticity transfer occurs between the inner rotational region and the ex- 
ternal potential flow. A detailed analysis of this problem along the lines sum- 
marized above was given recently by Watson (1966). Elliott (1968) extended the 
theory to the general two-dimensional case. 

The general features of the flow just described are also depicted in figure 1 (a)  
for the case of a favourable pressure gradient and in the limit of strong O(R-4) 
blowing. We have denoted the inner, or blowing region as I, the vorticity boun- 
dary layer as 11, and the irrotational region as 111. Region I is of course much 
thicker than 11, however both are O(R-4) in thickness and therefore much thinner 
than any characteristic dimension of the body, provided the Reynolds number R 
is sufficiently large. Consequently, the potential flow remains unaffected by the 
blowing for R 9 1, and hence the pressure term dpldx appearing in the boundary- 
layer equations is the same whether there is blowing or not. 

The flow pattern changes drastically, however, when the blowing velocity is 
of the same order of magnitude as the speed of the free stream, i.e. v,, N O(1). 
As shown by Cole & Aroesti (1968) and illustrated in figure 1 (b)  the thickness of 
the blowing region relative to some characteristic dimension of the body is now 
0(1), hence the pressure along I1 is no longer independent of the blowing rate 
but must be determined as part of the solution. Nevertheless the problem does 
retain one of the simplifying features of the case discussed earlier in that the 
so1ut)ion in regions I and 111 can again be obtained on the basis of the inviscid 
equations, i.e. without reference to the presence of the vorticity boundary layer 
11. A general procedure for constructing such solutions whenever the thickness 
of the blowing region I, although independent of R, is still numerically small 
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compared to  a typical dimension of the body was given by Cole & Aroesti (1968). 
Wallace & Kemp (1969) later relaxed this restriction. Extensions of the theory 
to supersonic and hypersonic speeds have recently been described by Lees & 
Chapkis (1969) and Thomas (1969) whose papers also refer to most of the earlier 
theoretical and experimental studies on the subject. 

I n  what follows we shall examine yet another blowing problem whose solution, 
as will be seen, corresponds neither to figure 1 (a )  nor to figure 1 (b). This is the 
classical case of laminar boundary-layer flow past a flat plate with a blowing 
velocity wo = C/(Rx)*, C being a constant, where, in the absence of blowing, the 
pressure gradient is identically zero. 

(b) 

FIGURE 1. Structure of the flow for favourable pressure gradients (for both (a )  and ( b )  
the thickness of the body is 0(1) while the thickness of each region is indicated in brackets). 
(a) Strong blowing, wo = O(R-3). ( b )  Massive blowing, wo = O(1). 

It is well known (Rosenhead 1963, p. 242) that the problem thus stated can 
be solved by the familiar Blasius similarity transformation provided that 
C < 0.6192. However, as C approaches this critical value from below, the surface 
shear stress is found to  decrease rapidly towards zero and the displacement 
thickness to increase without limit thus implying that at  C = 0.6192 the boundary 
layer is ‘blown off ’. The form of the solution as C-t 0.6192 was obtained analytic- 
ally by Kassoy (1970) and was found to be in good agreement with the extensive 
numerical calculations by Emmons & Leigh (1 954). 

The purpose of this paper is to consider the structure of the flow when C 
exceeds the above mentioned critical value, a problem also studied recently by 
Kassoy (1971), whose work, however, became available to us only after the com- 
pletion of the present analysis. As will be seen shortly t.he appropriate solution 
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(for C > 0.61 92), although retaining some of the features shown in figure 1, has 
a number of distinctive properties all of its own. Specifically, the blowing 
region I is neither O(R-8) nor O(1) in thickness but rather O(R-8); region 11, 
although still O(R-4) thick, now becomes a velocity rather than a vorticity 
boundary layer in the sense that there is an O(1) change in velocity across it; 
the external irrotational stream imparts an O(R-*) favourable pressure gradient 
to regions I and I1 which depends on the particular value of the blowing para- 
meter Cj and, finally, in contrast to the two cases discussed earlier, the solutions in 
the three regions are now interconnected in that it is no longer possible to  obtain 
the flow in I and I11 without having to take into account the existence of 11. 
Apart from being of interest in its own right, the solution to be developed below 
is believed to be of more general significance in that it refers to a rather unique 
example of a post-separation flow which can be successfully treated theoretically 
using boundary-layer techniques plus asymptotic expansions. 

In the next section we present the basic properties of this solution and in 
particular its asymptotic form as Rx-tco. The latter has already been derived 
by Kassoy (1971). Nevertheless, we shall develop this asymptotic solution in 
some detail, not only because our method of solution differs somewhat from 
Kassoy’s, but because it will pave the way for the more complete analysis that 
follows. Thus, using this asymptotic solution as a starting point, we increase the 
range of its validity in $ 3 by constructing the first four terms of an asymptotic 
expansion in terms of the small parameters (Rx)-*. To complete the picture, we 
briefly discuss in $4 the effects of more general blowing velocity profiles vo(x). 

2. Principal properties of the solution and its asymptotic form for 
large R x  

We consider the laminar flow of an incompressible constant property fluid 
past a semi-infinite horizontal flat plate. The variables are rendered dimension- 
less in the usual manner using U ,  the speed of the free stream, as the character- 
istic velocity and some arbitrary length, I ,  as the characteristic dimension. The 
Reynolds number R is defined as Ullv, v being the kinematic viscosity. The 
system then consists of the familiar dimensionless Navier-Stokes and continuity 
equations expressed in the standard Cartesian co-ordinates, plus the following 
boundary conditions : 

(2.1) i u = l ,  v = O  a t  x = - m ,  
au/ay = 0, v = 0 at  y = 0, x < 0, 

u = 0, v = C/(Rx)$ at y = 0, x > 0, with C > 0.6192. 

Evidently, the solution to the above problem should be independent of the 
choice of 1. 

In seeking to construct a solution that applies at large R we are guided by the 
fact, already noted in the introduction, that the boundary layer which normally 
would be expected to lie on the plate is blown off as C is increased to the critical 
value 0.6192. Thus for C > 0.6192 the blowing region must be thicker than 
O(R-*), which in the limit of large Reynolds number means that it will be 
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inviscid to a first approximation. Consequently the flow pattern here is in one 
respect qualitatively similar to that of the two cases considered earlier and 
depicted in figure 1, in the sense that viscous forces are small in comparison to 
the inertia terms everywhere except in a thin layer separating the blowing 
region from the external irrotational stream. Let us suppose then that the 
blowing region occupies the space 0 < y < B(R)h(x), x > 0, where h(x) is as yet 
unknown and P(R) > O(R-*). We further suppose, subject to a posteriori verifi- 
cation, that F(R)+O as R-tco. Also, because of the boundary condition at  
y = 0, v = O(R-4) throughout the blowing region and, by continuity, 

u = O(F-lR-+), 

which, to a first approximation, vanishes as R-tco. Therefore by Bernoulli’s 
equation, the pressure in the blowing region is O(F-2R-1) plus an additive 
constant which may be neglected. In  addition, from the y component of the 
Navier-Stokes equation, the pressure drop across I is O(R-l) and that across I1 
is O(R-hF), consequently, the pressure in the blowing region must equal the 
pressure at the lower edge of I11 as given by the irrotational flow solution. 
Prom thin air foil theory, however, the latter is OfF) ,  hence H(R) = R-#. 

Y 

FIGURE 2. Uniform flow past a flat plate with vo(z) = C(Rz)-h, C > 0.6192. 

The basic features of the flow when C > 0.6192 and R 9 1 are then as sketched 
in figure 2. In  the blowing region I viscous forces are negligible to a first approxi- 
mation, the scale of the lateral dimension y is O(R-)), and u and TJ are O(R-4) 
and O(R-*) respectively. Region I1 is a conventional boundary layer separating 
an effectively stagnant fluid from an essentially uniform stream whose speed is 
0 (1). Finally, region I11 refers to the irrotational flow past a body whose thick- 
ness ratio is O(R-*). 

The flow in region I1 can be immediately ascertained from Lock’s (1951) 
classical study of the velocity distribution in the laminar boundary layer be- 
tween parallel streams. Denoting by Y = 0 the streamline separating the 
injected fluid from that of the free stream, we have from Lock’s (1951) solution 
that: 

T&, - co) = - 2/31 (x/RP, 



342 J. B. Klemp and A .  Acrivos 

where Y I I ( x ,  -a) refers to the value of the stream function at the lower edge 
of the boundary-layer region I1 and p1 = 0,6192. Consequently the boundary 
conditions for the solution inside I, the blowing region, are: 

} ( 2 . 2 )  
Y, = -2C(x/R)*, ayfIlay = 0 at y = 0, 

Y, = - 2/3,(x/R)Q a t  y = R-*h(x), the upper boundary of I. 

Noting that $, equals exactly the critical value of C at which the conventional 
Blasius type boundary-layer solution ‘blows off ’, we see that the flow pattern as 
depicted in figure 2, with the thickness of the blowing region increasing down- 
stream, is possible only as long as the rate of fluid entrainment from I into I1 is 
less than the rate a t  which fluid is being injected into I along the porous surface 
y = 0; this means, of course, that C must exceed 0.6192. Otherwise, i.e. for 
C < 0.6192, the boundary layer is entirely capable of entraining all the injected 
fluid and blow off cannot occur. 

The form of YI along the boundaries of I and the absence of a natural character- 
istic length 1 for the problem suggest now the existence of a similarity solution 
which would be expected to apply for R+m; in fact, as will be shown shortly, 
it holds for ( R x ) ~  9 1. We suppose therefore that the boundary between I and I1 
is given by y = alR-*xn with a, being some dimensionless positive constant to 
be determined. However, since the solution must be independent of the value 
of the arbitrary characteristic length 1 which enters into y ,  x and R, the only 
possible choice of n is 8, i.e. the bIowing region I extends from y = 0 to 

y = R-*h(x) = ~,R-*x+. ( 2 . 3 )  

Consequently, from thin airfoil theory (Van Dyke 1964), the pressure that is 
impressed on I and I1 by the potential flow in I11 is 

where PIIIm, to be set equal to zero henceforth, denotes the pressure of the uniform 
stream, and the integral refers to its Cauchy principal value. The basic equation 

with boundary conditions given by ( 2 . 2 )  and ( 2 . 3 ) .  
The substitution 

Y = - 2CR-*~*gg(<), < Rh~x-8 

reduces (2.5) to g g” + *(g’)2 + a1/3QC2 = 0, 

g(0) = 1, g”0) = 0, g(aJ = PllC. 

with boundary conditions 

The solution satisfying the first two of the above is 



Plow past a plate with strong blowing 343 

hence, on account of the third condition, 

ctl = pf 3*h-1(2 +A)%( 1 - A)) ,  with h = (pl/C)$. (2.9) 

The above together with (2.6) and (2.8) completes then the similarity solution 
which, of course, agrees with that given by Kassoy (1971). The expression for 
a, behaves as expected, for ctl approaches zero or infinity according to whether 
C-tO.6192 or m. Also, the flow pattern in the blowing region, such as that 
depicted in figure 3 for h = 0.63 (corresponding to C = 2p1), conforms with the 
general requirements of the solution as discussed earlier and in connexion with 
figure 2. In  particular the solution clearly underlines the strong coupling that 
exists among all the three regions in this problem, in contrast to the other 
blowing problems mentioned in the introduction. Thus, the fact that the thick- 
ness of I is O(R-)) - a result arrived at by matching the pressure across I1 - 
and hence, by continuity, that u is O(R-*) within I, allowed us to solve for the 

3 I I I I 1 

X 

FIUURE 3. Streamline pattern in blowing region for h = 0.63 (C = 2PJ. 

flow inside the boundary layer by neglecting the velocity in the blowing region I. 
In  turn this provided us with one of the boundary conditions in (2.2) for the 
solution in I. Finally, the coupling between I and 111 was effected through the 
pressure gradient in (2.5) which came from I11 via (2.4). However, the latter 
contained the coefficient ctl which was determined only after finding the complete 
solution within the blowing region and applying the matching condition in the 
overlap domain between I and 11. This coupling among the solutions in the three 
regions is a characteristic and rather unusual feature of the present problem. 

One rather surprising result, though, concerns the expression €or the dimen- 
sionless shear stress at  the wall, which on account of (2.6) (2.7) and (2.9) becomes 

(2.10) 
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This is seen to  vanish both where C+oo(h-+O)j- and when C+0~6192(h+l), 
and in fact has a maximum at h = 5. Of course the vanishing of the shear stress 
as C+oo is understandable since in that case the streamlines become vertical 
for x > 0. However, since, as in any conventional boundary layer, (au/ay),,o is 
O(R6) when C < 0.6192, the vanishing of (2.10) implies that the functional 
dependence of the wall shear stress on C must be very peculiar indeed when C 
lies near the critical value for blow off. This is confirmed in figure 4 where we 
have plotted the quantity ( R z ) b 0  as a function of h for Rx = lo6. The curve for 
this figure was computed on the basis of (2.10) for h < 1, while for 

C < 0*6192(h > 1) 

the expression (Rx)bO = $(RX)*f’’(O), 

was used, where the quantity f ”(0)  was obtained as a function of h from Emmons 
& Leigh’s (1954) numerical solution of the Blasius equation with the appropriate 
boundary conditions for blowing. The apparent singularity near h = 1 should 

A-1 

FIGURE 4. Wall sheer stress as a function of h (P,/C)% for Rx = lo6. 

not be taken too seriously since, as was remarked earlier, the conventional 
boundary-layer result fails as h = 1 from above while, as will be shown in the 
next section, the present solution remains valid when h is close t o  1 only if 
(1 -A)* > (Rx)-f .  Nevertheless, the shape of the curve in figure 4 is surprising 
and therefore worth noting. 

Returning now to our similarity solution, as given by (2.6), (2.7) and (2.9), 
we can easily show, by estimating the error in (2.5) arising from the absence of 
the viscous term, that it applies only as long as (Rx)f 1. This condition is of 

7 It is apparent from (2.1) that, as will be discussed somewhat more fully in the next 
section, the present analysis ceases to apply when C becomes of the same order of magni- 
tude as ( R x ) t ,  i.e. we require that h(Rx)P % 1. 
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course rather restrictive and significantly limits the range of validity of our 
result. Hence, we proceed in the next section to construct an asymptotic expan- 
sion to the solution in terms of t,he small parameter (Rx)-*. 

3. Higher order analysis 
As expected, the strong interdependence of the solutions in the three regions 

which is apparent in the asymptotic results of the previous section increases in 
complexity when the analysis is extended to higher order in Rx. Thus, as is 
generally the case with perturbation expansions of this type, 8 higher order 
solution in one region depends not only on the solutions of that same order in 
the other regions, but also, as will be described shortly, on the lower order terms. 
This interaction is further enhanced by the form of the expansion in each of the 
three regions in that, as the power of Rx is decreased by only Q at each successive 
step, a large number of terms are required in order to obtain even a moderate 
increase in the range of validity in terms of Rx of the asymptotic solution given 
earlier. 

The fact that the expansion should proceed in this manner can be deduced 
from the observation that, as mentioned in $2,  the ratio of inertia to viscous 
forces in the blowing region is O[(Rx)i] .  This suggests that in order to  achieve 
a proper balance of these forces in the higher order analysis the stream function 
in I should be expanded in powers of (Rx)-Q. Also, since the boundary conditions 
for the solution in each region are determined in part by matching the solutions 
in the overlapping domains between adjacent regions, the expansion of the 
stream function in I1 and I11 must also be in terms of (Rx)-*. 

Before proceeding with the higher order analysis, it is helpful to consider the 
equations describing the flow in regions I1 and I11 and the form of the corres- 
ponding solutions in more detail. Let us turn first to the boundary layer. The 
usual procedure here would be to employ a curvilinear co-ordinate system 
with one of the axes along the Y = 0 streamline, i.e. the streamline separating 
the injected fluid from that of the free stream. In the present problem, however, 
the use of such a curvilinear system would require the boundary-layer co-ordinates 
to be transformed into Cartesian co-ordinates prior to matching the solution in 
I1 with those in I and 111, which are best handled within the Cartesian framework. 
This complication, although not severe, may be avoided by noting that since the 
thickness of the blowing region is only O( R-)) the boundary-layer solution can 
be developed just as well using Cartesian co-ordinates. Hence we can express 
the leading term of the boundary-layer solution in the similar form: 

YII(X>7) = (x /RPf(r ) ;  r = ( R / x ) % / - $ ( x ;  R)1, ( 3 . 1 )  

where x ,  y are the Cartesian co-ordinates defined in figure 2 and $ ( x ;  R )  represents 
the position of the Y = 0 streamline which is given by ( 2 . 3 )  to a first approxima- 
tion. Inserting the above expression for Y,,(x,r)  into the x and y components 
of the Navier-Stokes equations leads to 

( 3 . 2 )  

( 3 . 3 )  

2f’’/(r) +f(r)f”(r) = 2x v , , / a x  + o($2), 
aP,,/ar = - (x/R)*$”(x; R ) f ” ( r )  + O(R-l), 
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where PII(x,q) is the pressure in the boundary layer. Note that (3.3) is the 
same expression one would have obtained if boundary-layer co-ordinates had 
been used with one of the axes directed along the Y = 0 streamline, whose 
curvature is Q"(x;R).  Evidently, since Q ( x ; R )  is O(R-*), the pressure drop 
across the boundary layer is O(R-8). To first order then, PII (x, 7) = 0 and the 
problem reduces to that solved by Lock (1951). 

In  the free-stream region the first-order solution corresponds to flow over a thin 
body whose shape is given by y = $(x; R). Putting Y$i\ = R#(YIII - y), we have 

Y$~\-+o as y+m, x+-m. 

The solution of the above for the more general boundary condition along the 
positive x axis, Y$yI (x, 0) = A,xm, - 1 < m < 1, which we include for future 
reference, is 

or, in terms of the similarity variable f: = y/x, 

Hence the stream function in I11 is given to a first approximation by 

YII, (x7 6 )  = x6 + ( x W )  G), (3.5) 

where t(6) is obtained from (3.4) with m = $ and Am = -al. The complete 
solution to the first-order problem is then represented by (3.5), (3.1) and (2.6). 

Higher order solutions can now be generated by formally expanding the 
stream function in each of the three regions in powers of (Rx)-*. Not too sur- 
prisingly perhaps, in view of the requirement that  the solution remain indepen- 
dent of the choice of length scale 1 even in the higher order analysis, each term 
of the series will retain the self-similar form of the corresponding first-order 
solution. Of course, by analogy with the classical case of flow past a semi-infinite 
flat plate without blowing, we would expect that eventually terms involving 
logarithms and eigensolutions would appear in the expansions, thereby com- 
plicating the analysis. As we shall presently demonstrate, however, these 
additional terms do not begin to appear until the fourth-order solution is con- 
sidered. Consequently, the appropriate expansions are 

T I  (x, 5)  = - 2C(x/W{g,  (6) + (Rx)-+h (!3 + (Rx)-%73 (5 )  

Y I I  (x, 7) = (x/R)%f1(7) + @x)-+f2 (7) + (W-% (7) 

TI11 (x, f:) = xc  + (x*/R*) {tl ( f : )  + (W-% (5) + (Rx)-+t3 (5) 

+ (Rx)-%74 (5 )  In (Ex) + g 5  (<)I + . * .I, (3.6) 

+ (Rx)-~[~4(r)ln(Rx)+f5(7)1+ 4, (3 .7)  

+ (R4-4P4 (6) In (Rx) + t, (5)1+ . *  4, (3.8) 
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in which fi(r), g1(6), and tl(EJ now represent the first-order solutions. Also, 
because these higher order terms will produce additional corrections to the 
position of the Y = 0 streamline, the function $(x; R), which appears in the 
expression for q), must similarly be expanded, i.e. 

$(x; R) = (xf/RJ) {al + a2 ( R ~ ) - Q  + a3 (~x)-* + (Rx)-+[a,ln (EX) +a,] + . . .>. (3.9) 

It will be possible to uniquely determine the first four terms in (3.6)-(3.9) 
through straightforward application of standard expansion and matching 
techniques. However, f4(r), the fourth term in (3.7), plays the role of an eigen- 
solution to the appropriate boundary-layer equation for f, (7) hence the latter 
will contain an unknown constant. In  addition, since this indeterminacy will be 
transferred to the expressions for g, (g), t ,  ( E )  and a5 through the matching of 
(3.7) to (3.6) and (3.8), the solutions to (3.6)-(3.9) cannot be obtained uniquely 
beyond four terms without considering the details of the motion near the leading 
edge. Consequently our analysis will be terminated at  this point. 

The form of (3.6)-(3.9) allows us next to determine the pressure in I and I1 
before actually generating the higher order equations for the stream functions 
by expanding the pressure in each region in terms of (Rx)-) and then matching 
the corresponding series in the areas of overlap. We begin in the blowing region 
where the pressure through fourth order is a function of Rx only since the 
pressure drop across I is O(R-l). Hence, 

PI(% 5) = 111(Rx)-)+p~(Rx)-~+p~(Rs)-f+p~(Rs)-sln (Rx) +O[(Rs)-%], (3.10) 

where the pn’s, n = 1 - 4, are constants to be determined. Furthermore, because 
the pressure drop is O[(Rx)-s] across the boundary layer, the .first four terms in 
the expansion for PII(x, 7)  can be immediately matched to (3.10), yielding 

PII (x, 7) = 111 (Rx)-* +pz(Rx)-* +p3(Rx)-f+p4(Rx)-%In (Ex) + O[(Rx)-%]. (3.1 1) 

In  region 111, Bernoulli’s equation applies, thus 

For matching purposes, we require the form of the above as g-+ 0. This can be 
obtained readily using (3.8) and (3.9), and replacing 5 by its equivalent 

so that 
k-l$ + (W-W’ 

where terms involving t; (0) have been omitted since th (0) represents the 
tion to the pressure along the surface of a parabola which is known to be zero. 
In  addition, it can easily be shown from (3.4) that 

(3.12) 

correc- 

t,(O) = A,, 
tA(0) = -mA,cotmn 
t:(O) = m(l-m)A, ,  

(-1 < m < I), (3.13) 
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which yields, for the first-order solution, 

t ; ( O )  = -2a1/33, 
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t ; ( O )  = -gal. 

Finally, by matching (3.10) and (3.12) to the form of 
arrive at  

pl = 2a1/3%, P2 = 0, 
jp ,  = -ti(0)-(2/27)a;,  p4 = - - t i (O) ,  1 

(3.11) as 7-f i- GO, we 

(3.14) 

where the unknown terms in j p 3  and jp4 will be determined from the higher order 
solutions in the free stream. 

Having resolved the form of the pressure expansions in each region, we now 
proceed to construct the equations for the higher order similarity functions. 
Beginning with the boundary layer we obtain the higher order equations by 
substituting (3.7) and (3.11) into the x component of the Navier-Stokes equations 
and equating terms with like powers of Rx. Thus, 

(3.15) 

(3.16) 

1 6f'i+3f&+flfL+2f';f2 = 0, 
Sf':+ 3fi f + 2f; fi +f f3 = - 2jp1- f L 2 -  2fzfl, 

and 6 f ~ + 3 f l f ~ + 3 f ~ f 4 ' =  0, 

6f:+3flf:+3f;f; = -2f,f,"-3f~f4-~f3+6rf;f~-f;f41, (3.17) 

where f4(7) is an eigensolution of (3.17). Since 7 is by definition equal to zero 
along the Y = 0 streamline 

f 2 ( 0 )  =f3(0) =f4(0) =f5(0) = 0. (3.18) 

The two remaining boundary conditions for each of the above equations will 
be provided by the requirement that f; (7) must match, as 7 --f k GO, with the 
corresponding solutions in I and I11 respectively. 

In considering the solution to (3.16) with homogeneous boundary conditions 
it is clear that the eigenfunction f4(q) is simply 

f4(7) = K[fl (7)/& (0) - 111 (3.19) 

in which K is a constant. This eigensolution must be included as a logarithmic 
term in the expansion (3.7) since, in its absence, it would not be possible to 
obtain a solution to (3.17) satisfying the required boundary conditions. Thus the 
eigenfunction f4 (7) plays an important role in the fourth-order boundary-layer 
solution in that, by appearing in the non-homogeneous part of (3.17), it allows 
f5(y) to assume the proper form as 7-+ - GO. To determine K ,  we integrate 
(3.17) once to obtain 

f g  + +flf; = ( K / f ;  (0 ) ) f ;  - if2f4 - if; f3 + constant, (3.20) 

from which K can be found, given the asymptotic forms of the fn's as 7 -+ & 03. 

Of course the appearance of f4(7) in the analysis precludes the uniqueness of 
fs (7) since f4 (7) multiplied by any constant is also a solution to the homogeneous 
part of (3.17). 

Turning next to the blowing region, we insert (3.6) and (3.10) into the x 
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momentum equation to obtain the following expressions for the similarity 
functions g, (6)  : 

(3.21) 

(3.22) with g , ( O )  = gA(0) = 0, (n = 2,3,4). 

We will not be concerned here with the equation for g5(c)  since its solution 
contains an unknown constant arising through the matching of (3.6) to (3.7). 

In  view of the fact that the equations (3.21) are second order, the boundary 
conditions (3.22) are sufficient to insure a unique solution without reference to 
the adjacent boundary-layer region. For this reason matching of the stream 
function expansions for I and I1 in their domain of overlap will give rise to 
additional conditions from which the an’s will be determined. However, since, 
as will be seen in (3.30), eachp, is a function of the corresponding a, which prior 
to this matching is unknown, the solutions to the equations in (3.21) will be 

(3.23) 

expressed in the form 

i 3g1d + 3 g X  + 2dg2 = (3/C)g’:, 
3g19~+49~g~+9’;g3 = - (p3/C2)+ (3/C)&-2gL2-2929L 
39, 9: + 59; 9: = - t p4/C2, 

1 92(C)  = 92(5), 
9 3  (6) = a3g31 (6) + 932 

94 (5) = a4g41 (c), 
where gnl and g,, are independent of the corresponding a,. 

Finally, in the free-stream region it is apparent that since each higher order 
term satisfies Laplace’s equation with the appropriate boundary conditions along 
the x axis, the nth-order problem for n = 2 and 3 becomes 

Y~;-.o as x - f -m,  (+m, 

where Y# (x, t)  refers to the term in (3.8) containing t ,  (t), and A ,  is a constant 
to be determined through matching with the boundary-layer solution. For 
n = 4, the problem is the same except that ln(Rx) must be included in the 
expression for Y&i(x, 0). In  view of (3.41, 

(3.24) 

Again, as was done previously with the solution in region I, we shall terminate 
the analysis in I11 after obtaining four terms since the higher order terms cannot 
be uniquely determined. 

To complete the solution we will now determine the remaining unknown 
boundary conditions and constants by matching (3.8), as E+O, and (3.6), as 
C+al, to  the asymptotic forms of (3.7) as 7-f _+ co, respectively. Expanding 
first the stream function in the blowing region as [+-al, we have that 
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Similarly, for the free-stream region 
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YII I (~ ,  6)- (x# /Rf ) { -a l -  (2a1/39) 6+A2(Rx)-'+A3(Rx)-' 
5-0 +A4(Bx)-3 In (Rx) +O[(Rx)-*I}. (3.26) 

For the solution in the boundary layer, as 7 + 00, 

fn (7) + rn7 - Yn = r n  (Rx)*(f-  x-'$) - Yn, (3.27) 

where I?, and y ,  are constants. Therefore by substituting (3.27) into (3.7) and 
matching term by term to (3.26) we obtain 

r2 = r4 = 0, r3 = - p l ,  (3.28) 

and -42 = - (&2+Y1),  A3 = - ( a 3 + ~ 2 - ~ 1 a l ) ,  A4 = (3.29) 

The expression (3.8), with (3.24) and (3.29), now provides the solutionforYIII(x, f )  
to O[(Bx)-~ln(Rx)]. In  addition, using (3.29) in (3.13) with 

7-m 

A ,  = A,, rn = +(5-n) ,  

and substituting the resulting expressions into (3.14) yields the following 
relations for the pressure terms: 

i (3.30) 

Let us now consider the matching of the stream functions in I and I1 in their 

7 = (Ex)*{( 5 - a,) - a2 (Rx)-* - a3 (Ex)-* - a4 (&)A In (Rz) - . . .), (3.3 1) 

it is apparent that in order to achieve a proper matching of the terms in (3.25) 
with the corresponding terms in (3.7) as 7 --f - 00 we must have that 

fn (7) B$")q3 + BJn)q2 + BP'7 - 2/3, (n = 2 , 3 , 4 , 5 ) ,  (3.32) 

p1 = 2a1/3P, 
P3 = -(1/3QHa,+y,), P4 = -+3+a,.I 

132 = 0, 

region of overlap. Since 7 can be expressed in terms of (c-al) as 

?I+- a 

where Bin), B$"), B3(R) and /?, are constants and 

= B.f3 = B(3) = B(4) = B(4) = B(4) = 0. 
3 1 2 3 

Also, by direct substitution of (3.32) into (3.15) and (3.16) it can be easily verified 
that (3.32) correctly represents the form of f,(q) as q-+ - 00. Thus, inserting 
(3.32) and (3.31) into (3.7) and matching this expansion to (3.25) determines the 
constants in (3.32), 

Bi5) = 2a2 BA5) - 3 4  B.45) + 2a3 B$3) - 2CgA (al), (3.33) 
BL5) = - C[gg (al) + a 2 g y  (al)], B3(5) = - -1C 3 g,(a1), "' 
in addition to providing the following expressions for the an's: 

a3 = rg; (a1) +g3i (~ , ) I -Y(P , /~  - &gig; (al) -a,g; (a,) -g32  (El)}, (3.34) i a 2  = g;-l(%) {/32/C - g2 (a,)>, 

a 4  = - (/34/C) bsi (4 + g41 (al)l-l- 
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Finally, on account of (3.27) and (3.32), the boundary conditions for the functions 
fA(q) as q+ co, which are required for the integration of (3.15), are 

with the constants given by (3.28) and (3.33). 
Owing to the strong interdependence of the terms in (3.6), (3.7) and (3.8) 

evaluation of the similar functions and the related constants must proceed in a 
prescribed order. Thus, if we consider the nth-order analysis the calculations 
will begin in the boundary layer where, for n = 2,3,  the boundary conditions 
(3.19) and (3.35) and the pressure term (3.30) for the appropriate equation in 
(3.15) are determined entirely from the lower order solutions in I and 111. 
Integration of this pair of linear equations provides then values for the constants 
/3, and yn. For n = 4, the eigenfunctionf,(q) is given by (3.19) and thus P4 = +K. 
In  order to calculate K ,  we must then evaluate (3.20) in conjunction with (3.27) 
and (3.32), which yields 

/3, = +K = 9[3P1B~5)+2P,B~3)+P3B12)+y,p1-6B15)]. j(3.36) 
Continuing the nth-order analysis we move next to the blowing region where the 
appropriate equation for g,(c) in (3.21) is integrated, subject to (3.22.) and (3.30), 
to produce the nth-order term in (3.23), which in turn is used in (3.34) to deter- 
mine an. With a, known (3.24) and (3.29) then represent the solution for t,(f;),  
the nth-order term for the expansion in the free-stream region. This completes 
the nth-order calculations and provides the information necessary to begin the 
next order analysis which will proceed in the same manner. 

A 

0.9 
0.8 
0.7 
0.6 
0-5 
0.4 
0.3 
0-2 
0.1 

a1 

1.320 
1.827 
2.333 
2.922 
3.679 
4.756 
6.489 
9-880 

19.92 

a, 

2.151 
2-039 
1.943 
1.864 
1.803 
1.761 
1.739 
1.739 
1-74 

a3 

- 7.997 
- 9.929 
- 12.45 
- 15.70 
- 20.15 
- 26.77 
- 37.8 
- 60.0 
- 125 

a 4  

- 1.26 x lo-, 
3-11 x 
4.38 x 10-2 
0.1053 
0.3418 
1.58 

- 7.2 x 10-4 

12.4 
110 

P1 

0.5080 
0.7033 
0.8981 
1.125 
1.416 
1.831 
2.498 
3.803 
7.668 

Pz 

0 
0 
0 
0 
0 
0 
0 
0 
0 

P3 
1.584 
1.990 
2.513 
3-185 
4.104 
5.466 
7.73 

12.2 
25.5 

P6 

2.1 x 10-4 
3-65 x 10-3 

- 8-98 x 10-3 
- 1.27 x lo-* 
- 3.04 x 
- 9.87 x 10-2 
- 0.455 
- 3.60 
- 32.5 

TABLE 1. Coefficients in the expansions for the pressure and the position of 
the Y = 0 streamline as a function of h 

In  order to evaluate the additional information gained from the higher order 
analysis, the calculations, as outlined above, were performed numerically to 
determine the coefficients appearing in the expressions for the pressure and the 
position of the streamline separating the injected fluid from the free stream. 
The results of these computations are tabulated as a function of h in table 1 for 
n = 1 - 4. Clearly, whereas the second-order coefficients are of smaller magnitude 
than the corresponding first-order ones (except for h very close to unity), the 
third-order coefficients are relatively large. Thus, the ratio of a3 to a1 is about 
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- 5.5 while p 3  is about three times larger than p l .  However, in turning to the 
fourth-order coefficients we see that this trend is not continued, for, although 
a4 and p4 are large near h = 0 they both decrease rapidly in magnitude as h is 
increased and become very small when h -+ 1. It is also interesting to note that 
at  h = 0.7613, corresponding to C = $/3,, the denominator in (3.34), the expres- 
sion for a4, vanishes, implying that the expansions as written become singular. 
However, since in (3.34) P4 is only 0(10-3) at this value of A ,  the effect of this 
singularity becomes significant only when h is very close to 0-7613. Nevertheless, 
t o  complete the analysis it is necessary to remove this singularity by slightly 
altering the form of the expansions at this particular point. This can be accom- 
plished through the addition of a ln2(Rx) term to the fourth-order parts of 
(3.6), (3.9), and (3.10) which now become respectively 

- (2C/R) b 4 e  (C)ln2(Rx) + g4 (Rx) + g5 (511, 
(x+/Rf) [a4e In2(Rx) + a4 In (Rx) + a,], 

and (Rx)-+[pkIn2(Rx) +p41n (Rx) + p J .  

By reworking the fourth-order analysis it can be shown now that, indeed for 
h + 0.7613, qQe(Y) = a4e = p4e = 0. On the other hand at h = 0.7613 an addi- 
tional term involving age appears in the numerator of (3.34). Therefore, by 
choosing ak in such a way that this numerator also vanishes, thereby removing 
the singularity in (3.34), we obtain 

= 5-83 x 10-5, p4e = - 1-68 x 10-5. 

In  principle, a4 could be determined in a similar fashion by removing the singu- 
larity in the expression for a, analogous to (3.34). However, since, as mentioned 
following (3.22), the fifth-order solutions contain an unknown constant such an 
additional calculation would be rather pointless at  this stage. 

It has already been mentioned in $ 2  that when h is near unity the solution is 
valid only for (fix)* 9 (1 - A)-*. This restriction becomes apparent if we consider 
the relative magnitudes of a, and a2. Clearly, from (2.9), a,+ 0[( 1 -A)*] while, 
as can easily be proved analytically or seen in table 1, a2 remains O(1). Thus, 
unless (Rx)) 9 (1 -A)-*, the leading term in the expansions will not dominate 
the series and the assumptions involved in the first-order analysis will no longer 
be valid. It is also evident from table 1 that the solution breaks down a t  the 
other extreme when the rate of fluid injection becomes very large, i.e. as h -+ 0 
This is to be expected, however, since, if h becomes of the same numerical order 
of magnitude as (Rx)-), C will become numerically O[(Rx)*] with the result that 
v, and q5 will become O(1) in magnitude. This last condition corresponds to the 
case of massive blowing, treated by Cole & Aroesti (1968), which is outside the 
scope of the present work. 

4. Structure of the flow for more general blowing velocity profiles 
Up to this point our analysis has been mainly restricted to  rates of fluid 

injection proportional to (Rx)-*. We now examine other blowing velocity profiles 
which also lead to blow off of the boundary layer. A well-known example in this 
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category is the case of uniform injection along the surface of the plate, which 
causes the boundary layer to become detached a t  a finite distance downstream 
from the leading edge. In  considering this uniform blowing profile, Lew & 
Fanucci (1955) numerically treated the boundary layer upstream of separation 
and found that the skin friction decreased rapidly with increasing distance from 
the leading edge. Catherall et al. (1965) extended these computations to the 
point of separation and then analytically examined the form of the boundary- 
layer solution in this vicinity. Downstream of separation, however, the structure 
of the flow does not appear to have been established. 

In  this section we consider the position of the Y = 0 streamline downstream 
of separation, first for general blowing profiles and then for profiles of the form 
vo N R!zxm-l, 0 < rn 6 1, placing special emphasis on the case of uniform 
injection. To begin with, since we shall retain the requirement that vo(x)  be 
O ( R d ) ,  it is easy to see from the arguments presented in $ 2  that the region 
containing the injected fluid will become O(R-4) in thickness downstream of the 
point of detachment. Thus, to a first approximation, this blowing region will 
again be inviscid with the pressure a function of x only. With this in mind, an 
expression for $(x;  R) can be derived following the procedure of Cole & Aroesti 
(1968) mentioned previously, except that the stream function a t  the upper edge 
of the blowing region must now be matched to the adjacent boundary-layer 
solution, thereby yielding 

Here, P ( x )  is given in terms of $'(x; R )  from thin airfoil theory and x*(Y)  is the 
inverse function of Y o ( x ) ,  the stream function at  y = 0. Note that in deriving 
the upper limit for the integral in (4.1) Lock's (1951) solution has been used to 
describe the boundary layer between the inviscid blowing region and the free 
stream since, to a first approximation, the velocity in I11 remains unity while 
that in I may be neglected. However, this can be justified over the entire region 
of separated flow (except in the very close proximity of the separation point) 
only when detachment occurs a t  the leading edge; otherwise, if the point of 
breakaway lies at some finite distance x, from the leading edge the similar form 
of Lock's solution will become valid only asymptotically for x B x,, owing to the 
influence of the non-uniform 'initial' velocity profile at x = 2,. Apart from this 
restriction (4.1) is completely general and thus $(x; R)  can be determined in 
principle from (4.1) through an iterative process for arbitrary Yo (2). 

In  order to examine the structure of the flow downstream from detachment 
we shall focus on the class of blowing velocity profiles of the form 

Y E P , ( x )  = -R-$x~ ,  0 < rn 6 1.  

Here, for rn + &, it is unnecessary to include a constant multiplying xm since it 
can be eliminated by a suitable choice of the characteristic length. Of course for 
m = 4 the results of the previous sections apply. Although our primary interest 
lies in the case of uniform injection, we shall presently show that if rn is set 
equal to 1 the integral in (4.1) becomes undefined as x+m. Thus, we begin by 
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considering blowing profiles corresponding to Q < rn < 1 with a view to 
eventually letting m -+ 1.  

We first note that for blowing velocity profiles belonging to the above cate- 
gory the boundary layer will not separate from the surface of the plate until 
some distance downstream of the leading edge since it is capable of entraining 
fluid at a rate proportional to x-3. As a result (4.1) represents the position of the 
Y = 0 streamline only for x 2 x,. Furthermore, for x 9 x ,  the flow structure 
within the blowing region should be self-similar to a first approximation since 
with increasing distance downstream the flow should depend less and less on 
events occurring near the leading edge. Thus, to construct this similarity solution 
valid far downstream of the point of detachment, we assume that &x, R) is the 
form 
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$ ( x ,  R )  = R - # { ~ ~ . , ~ x ~ i + a , , x n a +  ...}+ ... for x 9 x,, (4.2) 

where n, > nz > . . . . Then, from thin airfoil theory, 

P ( x )  = -R-*{a,,n, cot (nln) x~1-1+cxzrnnz cot (nzn) x"a-1+ ...). (4.3) 

Using the first term in (4.3) it is now possible to determine aIm through a 
straightforward integration of (4.1). Before accomplishing this, however, we shalI 
first develop the similarity solution in more detail in order to demonstrate that 
the similarity hypothesis does, in fact, yield a self-consistent solution for z x,. 
To begin with, we observe that since YI N xm at y = 0,  and YI N x* at y = 4, 
the expression for Y, must be given by 

Y , ( X ,  C )  = - R-*{xmg,,(C) + x49,2(C) + *. .> + - - - 7 (4.4) 

where 6 = R ~ X - ~ I ~ .  Physically, this expression reflects the fact that, for x 9 z,, 
the rate of injection a t  y = 0 far exceeds the entrainment capabilities of the free 
shear layer located at  y = $. Thus, to a f i s t  approximation, all the injected fluid 
is swept downstream. The second term in (4.4) then serves to satisfy the en- 
trainment requirements of the shear layer. 

By substituting (4.3) and (4.4) into the x momentum equation and balancing 
the inertia and pressure terms, we next obtain 

n, = +(Zm+ I), n2 = 4ci-m) (4.5) 

plus the following differential equations for g11(6) and g1,([): 

rng,,g;,-(rn-n,)g~2,+(.nl- l)n,a,,cot(n,n) = 0 
and 

m g d 2  - (m - 2nl + 6) dl d2 + 4g';lg12 + (n2 - 1) n2aZn cot (nzn) = 0, (4.6) 

with boundary conditions 

(4.7) } 
gll(0) = 1, 

912(O) = &(O) = 0, 

&(O) = gIl(a1rn) = 0 

g12(~1rn) = 2/31. 

Since only two boundary conditions are required for the integration of each 
equation in (4.6), the third condition for gI1 and g,, in (4.7) allows one to evaluate 
the unknown constants a,, and a2,. 
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Having thus outlined the nature of the similarity solution, we now proceed 
with the calculation of aim. By integrating the first equation in (4.5) subject to 
(4.6) we obtain 

an expression which could also have been derived directly from (4.1) (note that, 
as mentioned earlier, this integral is undefined for m = 1). Therefore, upon 
evaluating the above integral and making use of (4.5), we arrive at 

For the case of constant blowing the above reduces to 

am+l = (.q24)+o(l-m) (4.10) 

while, from (4.5), n = 1. Since the latter indicates that the inviscid blowing 
region takes on the shape of a wedge, no solution can exist for the corresponding 
external flow if the plate is truly semi-infinite. For this reason, the problem of 
uniform blowing has meaning only for flat plates of finite length. Nevertheless, 
if the plate length is large compared to zs, (4.10) will remain valid over the major 
part of the downstream portion of the plate and the position of the Y = 0 
streamline will be given there by 

$(z;R) = (n2/2R)4x. (4.11) 

For blowing velocity profiles corresponding to 0 < m < + the structure of the 
separated region differs significantly from that described above for Q < m < 1. 
Near the leading edge fluid is injected into the flow with a velocity greater than 
,8, (fix)+; consequently, the boundary layer is immediately ‘blown away ’ from 
the plate. However, since entrainment into the boundary layer from below can 
exceed the blowing rate downstream, the boundary layer must eventually re- 
attach to the surface of the plate. Furthermore, from simple entrainment 
considerations it is evident that this re-attachment must occur at that value of 
x for which 

(4.12) 

Although in principle it should be possible to compute the shape of the separated 
flow region from (4.1) this will not be attempted here. 
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